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1 RESEARCH CONTEXT
The recent evolution of the DNA sequencing technologies has low-
ered the sequencing cost. The increased availability of sequenced
genomes prompted their application over a wide range of fields,
such as personalized medicine, biomedical research [13] and foren-
sics [11]. This contributed to a world-wide distribution of genomic
sequenced data and raised the need for sharing and collaboration.
The requirement of more complete and significant datasets drove
the research community to work towards a distributed genomic
ecosystem. The e-biobanking vision describes a secure federated
environment where all the participants communicate and share
their genomic data [4].

However, storing and sharing genomic data raises privacy chal-
lenges, since the human genome carries personal identifiable in-
formation. The described attacks on genomic data [7, 8, 14], high-
lighted the need for strong privacy protection mechanisms, and
made the research community aware of the necessity of developing
more efficient privacy protection methods [17].

In order to work toward a distributed genomic ecosystem and
tackle the privacy challenges, partial privacy-preserving solutions
for very specific applications have emerged in the last years. Al-
though privacy-preserving solutions have been developed [2, 10,
15], there are still unsolved challenges, such as, but not limited
to: (i) impossibility to provide both privacy protection and high
performance, since protective methods are slower than the high
performance methods, which require plaintext information [15, 16];
(ii) data protection is limited, since privacy protecting methods (e.g.
cryptography-based methods) usually can be broken in a shorter
time than genomic data privacy requires [9]; (iii) data utility, since
many cryptographic methods allow limited operations on the en-
crypted data, which can impair the data utility [3].

2 GENOMICWORKFLOW
The traditional genomic workflow consists of two main steps: se-
quencing, and analysis. On the sequencing step the biological sam-
ples (e.g. blood sample) are translated in sequences of nucleotides
(i.e., A, T, C, G) called reads. During the analysis step the reads are
first aligned to a reference genome to determine their position, and
then a variant calling step is performed. More particularly, variant
calling consists on aligning the reads to the locations they belong
and observe if they contain different nucleotides at some location

(see Fig. 1(a), step on the right). In Fig. 1(a), on the variant calling
step, the letters in red represent the variants, which differ from the
reference (sequence in bold). After the variant calling step, the re-
sults obtained are used for different studies to obtain the biological
insights.

3 RESEARCH GOALS
Our research consists in transforming the traditional genomic data
workflow in a distributed system design, suitable for a federated
environment, and fully privacy-preserving. So far, we focused on
the introduction of privacy-preserving methods from the earliest
steps – directly after the sequencing – and we evaluated how to
perform alignment and variant calling while protecting reads pri-
vacy. Our research intends to take into account the properties of the
reads produced either by the previous or the most recent sequenc-
ing technologies, enabling a general application of the developed
methods.

The goals of our work can be summarized as follows:

• Introduce privacy-preserving methods in an early stage of
the analysis workflow by classifying the sequenced reads by
sensitivity level.
• Develop a sensitivity classification which can be adapted to
the sequences used in different studies.
• Allow the adaptation of the privacy-preserving conditions
and methods to the different sensitivity levels.
• Design of a privacy-preserving distributed analysis scheme
where data is stored at multiple locations and its analysis
do not leak each participant information (e.g. identity). The
main focus is to allow alignment and variant calling steps.

4 RESEARCH DESIGN
The proposed approach consists in the inclusion of privacy-preserving
methods in the traditional genomic reads analysis workflow.

Fig. 1(b) introduces the privacy-preserving genomic reads anal-
ysis workflow we propose, whose novelties are the introduction
of a sensitivity-aware filtering step after the sequencing step and
a distributed analysis scheme. The filtering step consists on the
classification of the reads among different sensitivity levels accord-
ing to the information they contain. This classification allows the
adaptation of the storage conditions and of the algorithms applied
to the privacy protection the reads of each sensitivity levels need.
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Figure 1: Traditional analysis workflow vs privacy-preserving proposed approach.
(a) Traditional analysis workflow. In this scheme data is analysed using plaintext algorithms. (b) Privacy-preserving proposed approach. The
proposed scheme introduces a sensitivity-aware filtering step and then adapts the analysis (e.g. alignment and variant calling) algorithms to

the sensitivity levels.

The distributed analysis scheme assumes the reads are stored across
multiple locations and allows their analysis without high data trans-
mission costs, since the data do not need to be transferred between
different locations. The plan is to transmit only statistics and meta-
data which do not leak personal details. Our distributed scheme
also includes methods to preserve the identity of the reads.

ONGOING RESULTS
Long reads filtering:Our research developed a long reads filtering
approach based on a previously published filter for 30-bases reads
which classifies the reads into privacy-sensitive and non-privacy-
sensitive information [5]. Our approach has a higher accuracy than
the previous filter: less privacy-sensitive nucleotides missed, and
less non-privacy-sensitive nucleotides wrongly classified. We also
studied the effect of the presence of errors on the reads, and we
showed that iterating the filtering process helps on tolerating errors
(with 2% of errors we detect 86% of the sensitive nucleotides present
on the reads, instead of 56% using the previous filter [5]). The output
of our filter are reads where the privacy-sensitive information is
masked.

Sensitivity levels: Our research also focused on the definition
of sensitivity levels based on quantitative (e.g. allele frequency) and
qualitative (e.g. disease susceptibility). We studied the links between
data in different sensitivity levels and we showed that locating all
the linked information on the observed highest level prevents in-
formation inference between different levels. Using the long reads
filtering approach developed to make the classification of the reads
into sensitivity levels, we present an example of three sensitivity

levels and studied the proportion of an individual’s genome in each
level. The results showed that 5% of the reads in the genome have
very high sensitivity, 23% have high sensitivity and the remaining
72% have low sensitivity. To summarize, the levels can be adapted to
the properties of each data analysis and/or user priorities. Further-
more, different sensitivity levels correspond to different needs of
protection, i.e. highly sensitive data requires higher protection (e.g.
crypto-based algorithms), while least sensitive data can be analysed
using usual protection levels. Therefore, with the presented classi-
fication we adapt the privacy protection to each level of sensitivity
while improving analysis performance.

ONGOING RESEARCH
Privacy leaks from reads: Understanding howmuch information
a set of reads can leak is important to adjust the protective measures
ensuring the required privacy. Differently from previous work fo-
cused on genomic data protection after reads analysis, we focus on
the study of privacy risks of raw reads, before they are analysed. We
consider reported privacy attacks on genomic data [7, 8, 14] which
were performed on processed data (e.g. SNPs, genotypes) and adapt
their application for raw reads. We also explore previous work on
defining the number of genomic variations (e.g. SNPs) needed to
uniquely identify an individual to better understand which infor-
mation is and is not unique for an individual [12]. For example,
disease related regions of the genome leaks more information about
an individual and they might contribute to his/her identification.

The goal is to define the amount of sensitive information a set of
reads contains andwhich other information canwe obtain exploring
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data linkages. To reach our goal, we plan to follow the state of the art
variant calling process in order to obtain the sensitive information
and then explore inference methods to obtain further information.

Distributed variant calling:Working toward the e-biobanking
vision [4] which describes data distributed over multiple data cen-
ters (i.e., reads here), the goal is to develop a distributed system
which enables the analysis of the reads without transmitting them
between centers. Some distributed systems for biomedical data have
been created, however more work is needed in this field [1, 6]. The
first step on this topic is to understand the requirements of research
community (e.g. statistics, functionalities, algorithms) in order to
improve studies completeness. Afterwards, we plan to enable the
release of analysis statistics while ensuring that one center is not
able to learn about other centers data, thus enabling the implemen-
tation of coalitions of non-mutually trusting partners with common
objectives.

This topic includes: (i) studying secure multi-party computa-
tions for data exchange between data centers; (ii) defining of the
information that is secure to share between different centers; (iii)
defining of the communication protocol; (iv) studying the existing
data protection methods and selecting the most adequate for our
data requirements.

ACKNOWLEDGMENTS
This work was supported by the Fonds National de la Recherche
Luxembourg (FNR) through PEARL grant FNR/P14/8149128, and
by the Fundação para a Ciência e para a Tecnologia (FCT) through
funding of the LaSIGE Research Unit, ref. UID/CEC/00408/2013.

REFERENCES
[1] Beacon Network. https://beacon-network.org/.
[2] Erman Ayday, Jean Louis Raisaro, Jean-Pierre Hubaux, and Jacques Rougemont.

2013. Protecting and Evaluating Genomic Privacy in Medical Tests and Personal-
ized Medicine. In Proceedings of the 12th ACM Workshop on Workshop on Privacy
in the Electronic Society (WPES ’13). 95–106.

[3] Joshua Baron, Karim El Defrawy, Kirill Minkovich, and et al. 2012. 5pm: Secure
pattern matching. SCN (2012), 222–240.

[4] Alysson Bessani, Jörgen Brandt, Marc Bux, Vinicius Cogo, Lora Dimitrova, Jim
Dowling, Ali Gholami, Kamal Hakimzadeh, Micheal Hummel, Mahmoud Ismail,
Erwin Laure, Ulf Leser, Jan-Eric Litton, Roxanna Martinez, Salman Niazi, Jane
Reichel, and Karin Zimmermann. 2015. BiobankCloud: a platform for the secure
storage, sharing, and processing of large biomedical data sets. DMAH (2015).

[5] Vinicius V Cogo, Alysson Bessani, Francisco M Couto, and Paulo Verissimo. 2015.
A high-throughput method to detect privacy-sensitive human genomic data. In
Proceedings of the 14th ACM Workshop on Privacy in the Electronic Society. ACM,
101–110.

[6] The Global Alliance for Genomics and Health. 2016. A federated ecosystem for
sharing genomic, clinical data. Science 352, 6291 (2016), 1278–1280.

[7] Melissa Gymrek, Amy L McGuire, David Golan, Eran Halperin, and Yaniv Erlich.
2013. Identifying personal genomes by surname inference. Science 339, 6117
(2013), 321–324.

[8] Nils Homer, Szabolcs Szelinger, Margot Redman, David Duggan, Waibhav Tembe,
Jill Muehling, John V Pearson, Dietrich A Stephan, Stanley F Nelson, and DavidW
Craig. 2008. Resolving individuals contributing trace amounts of DNA to highly
complex mixtures using high-density SNP genotyping microarrays. PLoS Genet
4, 8 (2008), e1000167.

[9] Mathias Humbert, Kévin Huguenin, Joachim Hugonot, Erman Ayday, and Jean-
Pierre Hubaux. 2015. De-anonymizing Genomic Databases Using Phenotypic
Traits. Proceedings on Privacy Enhancing Technologies 2015, 2 (2015), 99–114.

[10] Murat Kantarcioglu, Wei Jiang, Ying Liu, and Bradley Malin. 2008. A crypto-
graphic approach to securely share and query genomic sequences. IEEE Transac-
tions on information technology in biomedicine 12, 5 (2008), 606–617.

[11] Manfred Kayser and Peter de Knijff. 2011. Improving human forensics through
advances in genetics, genomics and molecular biology. Nature Reviews Genetics
12, 3 (2011), 179–192.

[12] Zhen Lin, Art B Owen, and Russ B Altman. 2004. Genomic research and human
subject privacy. SCIENCE-NEW YORK THEN WASHINGTON-. (2004), 183–183.

[13] Reza Mirnezami, Jeremy Nicholson, and Ara Darzi. 2012. Preparing for Precision
Medicine. New England Journal of Medicine 366, 6 (2012), 489–491.

[14] D R. Nyholt, C.-E. Yu, and P. M. Visscher. 2009. On Jim WatsonâĂŹs APOE
status: genetic information is hard to hide. European Journal of Human Genetics
17 (2009), 147–149.

[15] Victoria Popic and Serafim Batzoglou. 2017. A hybrid cloud read aligner based
on MinHash and kmer voting that preserves privacy. Nature Communications 8
(2017).

[16] Michael C Schatz. 2009. CloudBurst: highly sensitive read mapping with MapRe-
duce. Bioinformatics 25, 11 (2009), 1363–1369.

[17] Shuang Wang, Xiaoqian Jiang, Haixu Tang, Xiaofeng Wang, Diyue Bu, Knox
Carey, Stephanie OM Dyke, Dov Fox, Chao Jiang, Kristin Lauter, Bradley Malin,
Heidi Sofia, Amalio Telenti, Lei Wang, Wenhao Wang, and Lucila Ohno-Machado.
2017. A community effort to protect genomic data sharing, collaboration and
outsourcing. npj Genomic Medicine 2, 1 (2017), 33.

https://beacon-network.org/

	1 Research context
	2 Genomic workflow
	3 Research goals
	4 Research design
	References

